如图①,在矩形纸片ABCD中,AB=4,AD=6.点E,F分别在AB,DC上(E不与A,D重合,F不与B,C重合),现以EF为折痕,将矩形纸片ABCD折叠.
(1)当A点落在BC上时(如图②),求证:△EFA′是等腰三角形;
(2)当A′点与C重合时,试求△EFA’的面积;
(3)当A′点与DC的中点重合时,试求折痕EF的长.
如图,四边形ACBD是⊙O的内接四边形,AB为直径,弧CD=弧AD,DE⊥BC,垂足为E.
(1)求证:BD平分∠ABE;
(2)判断直线ED与⊙O的位置关系,并说明理由;
(3)若BE=2,AB=8,求阴影部分的面积.
2019年,我省中考体育分值增加到55分,其中女生必考项目为八百米跑,我校现抽取九年级部分女生进行八百米测试成绩如下:
成绩 | 3′40″及以下 | 3′41~4′ | 4′01″~4′20′ | 4′21″~4′40″ | 4′41″及以上 |
等级 | A | B | C | D | E |
百分比 | 10% | 25% | m | 20% | n |
(1)求样本容量及表格中的m和n的值
(2)求扇形统计图中A等级所对的圆心角度数,并补全统计图.
(3)我校9年级共有女生500人.若女生八百米成绩的达标成绩为4分,我校九年级女生八百米成绩达标的人数有多少?
在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.
(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.
(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)
如图,射线OA放置在4×5的正方形虚线网格中,现请你在图中找出格点(即每个小正方形的顶点)B,并连接OB、AB使△AOB为直角三角形,并且
(1)使tan∠AOB的值为1;
(2)使tan∠AOB的值为.
将正面分别标有6,7,8,背面花色相同的三张卡片,洗匀后,背面朝上放在桌面上.
(1)随机取一张,求是偶数的概率;
(2)随机取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?