我们定义:如图,在△中,把绕点按顺时针方向旋转得到,把绕点按逆时针方向旋转得到,连接,当时,我们称△是△的“旋补三角形”,△边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
⑴ 特例感知:在如图、如图中,是的“旋补三角形”,是的“旋补中线”.
① 如图,当为等边三角形时,与的数量关系为= ;
② 如图,当,时,则长为 .
⑵ 精确作图:如图,已知在四边形内部存在点,使得是的“旋补三角形”(点D的对应点为点A,点C的对应点为点B),请用直尺和圆规作出点(要求:保留作图痕迹,不写作法和证明)
⑶ 猜想论证:在如图中,当△为任意三角形时,猜想与的数量关系,并给予证明.
如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.
如图,菱形ABCD中,AE⊥BC于点E,∠BAE=30°,AD=4cm.
(1)求菱形ABCD的各角的度数;
(2)求AE的长.
如图,▱ABCD中,点E、F分别在AB、CD上,且BE=DF,EF与AC相交于点P,求证:PA=PC.
某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错的题目进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:
请根据图中信息,解答下列问题
(1)该调查的样本容量为______,a=______%,b=______%,“常常”对应扇形的圆心角为______°
(2)请你补全条形统计图;
(3)若该校共有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的学生有多少名?
正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1.
(2)作出△ABC关于原点O成中心对称的△A1B2C2.
(3)请直接写出以A1、B2、C2为顶点的平行四边形的第四个顶点D的坐标________.