如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.
(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为 (填“真”或“假”)命题,并说明理由;
(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;
(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.
已知抛物线与x轴交于点、B,与y轴交于点C,对称轴是直线.
求抛物线的解析式;
如图,求外接圆的圆心M的坐标;
如图,在BC的另一侧作,射线CF交抛物线于点F,求点F的坐标.
已知函数,如表是函数的几组对应值:
x | 0 | 1 | 2 | 3 | 4 | ||||||||
y | 0 |
请你根据学习函数的经验,利用表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行探究下面是小腾的探究过程,请补充完整.
如图所示,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点根据描出的点,画出该函数的图象
根据函数图象,按要求填空:
在y轴左侧该函数图象有最______点,其坐标为______.
当时,该函数y随x的增大而______.
当方程只有一个解时,则a的取值范围为______.
如图,△ABC中,AB=AC,AB是⊙O的直径,BC与⊙O交于点D,点E在AC上,且∠ADE=∠B.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为5,CE=2,求△ABC的面积.
如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)
2018年5月13日,大国重器﹣﹣中国第一艘国产航母正式海试,某校团支部为了了解同学们对此事的知晓情况,随机抽取了部分同学进行调查,并根据收集到的信息绘制了如下两幅不完整的统计图,图中A表示“知道得很详细”,B表示“知道个大概”,C表示“听说了”,D表示“完全不知道”,请根据途中提供的信息完成下列问题:
(1)扇形统计图中A对应的圆心角是 度,并补全折线统计图.
(2)被抽取的同学中有4位同学都是班级的信息员,其中有一位信息员属于D类,校团支部从这4位信息员中随机选出两位作为校广播站某访谈节目的嘉宾,请用列表法或画树状图法,求出属于D类的信息员被选为的嘉宾的概率.