满分5 > 初中数学试题 >

(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分...

(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°AC的垂直平分线分别与ACBCAB的延长线相交于点DEF,且BF=BC⊙O△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BDFH

1)求证:△ABC≌△EBF

2)试判断BD⊙O的位置关系,并说明理由;

3)若AB=1,求HG•HB的值.

 

(1)证明见试题解析;(2)相切,理由见试题解析;(3). 【解析】 试题(1)由∠ABC=90°和FD⊥AC,得到∠ABF=∠EBF,由∠DEC=∠BEF,得到∠DCE=∠EFB,从而得到△ABC≌△EBF(ASA); (2)BD与⊙O相切.连接OB,只需证明∠DBE+∠OBE=90°,即可得到OB⊥BD,从而有BD与⊙O相切; (3)连接EA,EH,由DF为线段AC的垂直平分线,得到AE=CE,由△ABC≌△EBF,得到AB=BE=1,进而得到CE=AE=,故,即可得出结论, 又因为BH为角平分线,易证△EHF为等腰直角三角形,故,得到,再由△GHF∽△FHB,得到. 试题解析:(1)∵∠ABC=90°,∴∠CBF=90°,∵FD⊥AC,∴∠CDE=90°,∴∠ABF=∠EBF,∵∠DEC=∠BEF,∴∠DCE=∠EFB,∵BC=BF,∴△ABC≌△EBF(ASA); (2)BD与⊙O相切.理由:连接OB,∵DF是AC的垂直平分线,∴AD=DC,∴BD=CD,∴∠DCE=∠DBE,∵OB=OF,∴∠OBF=∠OFB,∵∠DCE=∠EFB,∴∠DBE=∠OBF,∵∠OBF+∠OBE=90°,∴∠DBE+∠OBE=90°,∴OB⊥BD,∴BD与⊙O相切; (3)连接EA,EH,∵DF为线段AC的垂直平分线,∴AE=CE,∵△ABC≌△EBF,∴AB=BE=1,∴CE=AE=,∴,∴,又∵BH为角平分线,∴∠EBH=∠EFH=45°,∴∠HEF=∠HBF=45°,∠HFG=∠EBG=45°,∴△EHF为等腰直角三角形,∴,∴,∵∠HFG=∠FBG=45°,∠GHF=∠GHF,∴△GHF∽△FHB,∴,∴,∴.
复制答案
考点分析:
相关试题推荐

学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图1,2).请根据统计图解答下列问题:

1)本次调查中,王老师一共调查了     名学生;

2)将条形统计图补充完整;

3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.

 

查看答案

先化简,再求值:,其中x在﹣120中选一个你认为适当的数代入求值.

 

查看答案

解分式方程:

 

查看答案

计算:.

 

查看答案

如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知ABBDCDBD,测得AB2米,BP3米,PD12米,那么该古城墙的高度CD________米.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.