在平面直角坐标系中,点P(-3,5) 所在的象限是( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
直线a、b、c、d的位置如图,如果∠1=100°,∠2=100°,∠3=125°,那么∠4等于( )
A. 80° B. 65° C. 60° D. 55°
在平面直角坐标系中,点A(a,1)、B(-1,b)的坐标满足:.
(1)直接写出点A、B的坐标;
(2)如图,过点E(m,0)(m>1)作x轴的垂线l1,点A关于l1的对称点为A’(2m-1,1),若BA’交x轴于点F,当E点在x轴上运动时,求EF的长度;
(3)如图,把点A向上平移2个单位到点C,过点C作y轴的垂线l2,点D(n,c)在直线l2上(不和C重合),若∠CDA=,连接OA、DA,∠AOx=45°,若满足∠DAO=225°-,求n的取值范围.
如图,直线l分别交AB,CD于点M,N(点M在点N的右侧),若∠1=∠2
(1)求证:AB//CD;
(2)如图,点E、F在AB,CD之间,且在MN的左侧,若∠MEF+∠EFN=255°,求∠AME+∠FNC的度数;
(3)如图,点H在直线AB上,且位于点M的左侧;点K在直线MN上,且在直线AB的上方.点Q在∠MND的角平分线NP上,且∠KHM=2∠MHQ,若∠HQN+∠HKN=75°,直接写出∠PND和∠QHB的数量关系.
如图,在三角形ABC中, ∠B=60°, ∠C=,点D是AB上一点,点E是AC上一点, ∠ADE=60°, 点F为线段BC上一点,连接EF,过D作DG//AC交EF于点G,
(1)若=40°,求∠EDG的度数;
(2)若∠FEC=2∠DEF,∠DGF=∠BFG,求.
如图,在方格纸中,每个小正方形的边长为1个单位长度,正方形ABFG和FCDE的顶点均和小正方形的顶点重合.
(1)建立平面直角坐标系,使得B,C的坐标分别为(0,0),(4,0),并写出点A的坐标;
(2)直接写出正方形FCDE的边长;
(3)连接EG,直接比较三角形BCF和三角形GEF的面积大小 (用“大于”,“小于”,“等于”作答)