李老师是我区“IDJP”课题研究的主要成员之一,一天他在视频微课中提出了以下问题:如图,AB,CD为圆形纸片中两条互相垂直的直径,将圆形纸片沿EF折叠,使B与圆心M重合,折痕EF与AB相交于N连结AE,AF.李老师提出两个猜想和一个问题,请你证明或解答出来:
①四边形MEBF是菱形;
②△AEF为等边三角形;
③求S△AEF:S圆.
某商品的进价为每件40元,售价为每件50元,每个月可卖出200件.如果每件商品的售价每上涨2元,则每个月少卖5件,设每件商品的售价为x元,则可卖y件,每个月销售利润为w元.
(1)求y与x的函数关系式;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
如图,点P为直径BA延长线上一点,D为圆上一点,BH⊥PD于H,BD恰好平分∠PBH,BH交⊙O于C,连接CD,OD.
(1)求证:PD为⊙O的切线;
(2)若CD=2,∠ABD=30°,求⊙O的直径.
如图,反比例函数y=的图象与一次函数y=kx+4的图象在第一象限的交点于P,过点P作x轴,y轴垂线分别交于A,B两点,且函数y=kx+4的图象分别交x轴、y轴于点C,D,已知S△OCD=2,OA=2OC.
(1)点D的坐标为______;
(2)求一次函数解析式及m的值;
(3)写出当x>0时,不等式kx+4>的解集.
如图抛物线y=x2+bx-c经过直线y=x-3与坐标轴的两个交点A,B,与x轴交于另一点C,抛物线的顶点为D.
(1)求此抛物线的解析式;
(2)求S△ACD的面积.
在综合实践课上王老师带领大家利用所学的知识了解某广告牌的高度,已知CD=3m,经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH.