下列说法正确的是( )
A. 为了解我国中学生课外阅读的情况,应采取全面调查的方式
B. 一组数据1、2、5、5、5、3、3的中位数和众数都是5
C. 投掷一枚硬币100次,一定有50次“正面朝上”
D. 若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
下列运算正确的是( )
A. B.
C. D.
如果温度上升记作,那么温度下降记作( )
A. B. C. D.
如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。
小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
已知函数与交于第一象限一点,轴于,.
(1)求两个函数解析式;
(2)求的面积.