如果k<0,b>0,那么一次函数y=kx+b的图象经过( )
A. 第一、二、三象限 B. 第二、三、四象限
C. 第一、三、四象限 D. 第一、二、四象限
下列关于x的方程一定有实数解的是( )
A. B.
C. D.
如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )
A. B.
C. D.
小红和小明在研究一个数学问题:已知AB∥CD,AB和CD都不经过点E,探索∠E与∠A,∠C的数量关系.
(一)发现:在如图1中,小红和小明都发现:∠AEC=∠A+∠C;
小红是这样证明的:如图7过点E作EQ∥AB.
∴∠AEQ=∠A( )
∵EQ∥AB,AB∥CD.
∴EQ∥CD( )
∴∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C 即∠AEC=∠A+∠C.
小明是这样证明的:如图7过点E作EQ∥AB∥CD.
∴∠AEQ=∠A,∠CEQ=∠C
∴∠AEQ+∠CEQ=∠A+∠C即∠AEC=∠A+∠C
请在上面证明过程的横线上,填写依据:两人的证明过程中,完全正确的是 .
(二)尝试:
(1)在如图2中,若∠A=110°,∠C=130°,则∠E的度数为 ;
(2)在如图3中,若∠A=20°,∠C=50°,则∠E的度数为 .
(三)探索:
装置如图4中,探索∠E与∠A,∠C的数量关系,并说明理由.
(四)猜想:
(1)如图5,∠B、∠D、∠E、∠F、∠G之间有什么关系?(直接写出结论)
(2)如图6,你可以得到什么结论?(直接写出结论)
“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC