已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
(1)求AB的长;
(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.
已知关于x,y的二元一次方程组的解为,求a、b的值.
计算:
如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=4.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
如果当a≠0,b≠0,且a≠b时,将直线y=ax+b和直线y=bx+a称为一对“对偶直线”,把它们的公共点称为该对“对偶直线”的“对偶点”,那么请写出“对偶点”为(1,4)的一对“对偶直线”:______.
如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.