如图,在平面直角坐标系中,直线y=-x-3与抛物线y=x2+mx+n相交于A、B两个不同的点,其中点A在x轴上.
(1)n=3m-9(用含m的代数式表示);
(2)若点B为该抛物线的顶点,求m、n的值;
(3)①设m=-2,当-3≤x≤0时,求二次函数y=x2+mx+n的最小值;
②若-3≤x≤0时,二次函数y=x2+mx+n的最小值为-4,求m的值.
甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲先出发,甲出发0.2小时后乙开汽车前往,设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km),如图是y1与y2关于x的函数图像.
(1)求x为何值时,两人相遇?
(2)求x为何值时,两人相距5km?(直接写出结果)
如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)
如图,一次函数y=-x+6的图像与反比例函数y=(k>0)的图像交于A、B两点,过A点作x轴的垂线,垂足为M,△AOM的面积为2.5.
(1)求反比例函数的表达式;
(2)在y轴上有一点P,当PA+PB的值最小时,求点P的坐标.
如图,菱形ABCD的边长为,对角线AC、BD交于O,且DE∥AC,AE∥BD.
(1)判断四边形AODE的形状并给予证明;
(2)若四边形AODE的周长为14,求四边形AODE的面积.
某省计划5年内全部地级市通高铁.某高铁在泰州境内的建设即将展开,现有大量的沙石需要运输.某车队有载质量为8t、10t的卡车共12辆,全部车辆运输一次能运输100t沙石.
(1)求某车队载质量为8t、10t的卡车各有多少辆;
(2)随着工程的进展,某车队需要一次运输沙石165t以上,为了完成任务,准备新增购这两种卡车共7辆,车队有多少种购买方案?请你一一求出.