苏科版九年级下册数学课本91页有这样一道习题:
(1)复习时,小明与小亮、数学老师交流了自己的两个见解,并得到了老师的认可:
①可以假定正方形的边长AB=4a,则AE=DE=2a,DF=a,利用“两边分别成比例且夹角相等的两个三角形相似”可以证明△ABE∽△DEF;请结合提示写出完整的证明过程.
②图中的相似三角形共三对,而且可以借助于△ABE与△DEF中的比例线段来证明△EBF与它们相似.证明过程如下:
(2)交流后小亮尝试对问题进行了变化,在老师的帮助下提出了新的问题,请你解答:
已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC.(AB>AE)
①求证:△AEF∽△ECF;
②设BC=2,AB=a,是否存在a值,使得△AEF与△BFC相似.若存在,请求出a的值;若不存在,请说明理由.
定义:如图,在△ABC中,∠C=30°,我们把∠A的对边与∠C 的对边的比叫做∠A的邻弦,记作thi A,即thi A== .请解答下列问题:
已知:在△ABC中,∠C=30°.
(1)若∠A=45°,求thi A的值;
(2)若thi A=,则∠A= °;
(3)若∠A是锐角,探究thi A与sinA的数量关系.
如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O 上,BD平分∠ABC交AC于点E,DF⊥BC交BC的延长线于点F.
(1)求证:FD是⊙O的切线;
(2)若BD=8,sin∠DBF=,求DE的长.
为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.
(1)求证:△ABE≌△ACD;
(2)判断四边形BCDE的形状,并说明理由.
某中学随机抽取了部分九年级男生进行引体向上测试,整理样本数据,得到如下统计图.规定:0个到1个为不合格,2个到3个为合格,4个到5个为良好,6个及以上为优秀.
(1)这次抽样调查引体向上成绩的众数为 个,中位数为 个;
(2)用适当的统计图表示“不合格”、“合格”、“良好”、“优秀”四个等级学生人数所占百分比;
(3)该中学九年级男生共450人,试估计全校九年级男生引体向上成绩优秀的人数.