满分5 > 初中数学试题 >

如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中A...

如图,在RtPMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCDAB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令RtPMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCDPMN重叠部分的面积为y,则yx的大致图象是(  )

A.     B.     C.     D.

 

A 【解析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可. ∵∠P=90°,PM=PN, ∴∠PMN=∠PNM=45°, 由题意得:CM=x, 分三种情况: ①当0≤x≤2时,如图1, 边CD与PM交于点E, ∵∠PMN=45°, ∴△MEC是等腰直角三角形, 此时矩形ABCD与△PMN重叠部分是△EMC, ∴y=S△EMC=CM•CE=; 故选项B和D不正确; ②如图2, 当D在边PN上时,过P作PF⊥MN于F,交AD于G, ∵∠N=45°,CD=2, ∴CN=CD=2, ∴CM=6﹣2=4, 即此时x=4, 当2<x≤4时,如图3, 矩形ABCD与△PMN重叠部分是四边形EMCD, 过E作EF⊥MN于F, ∴EF=MF=2, ∴ED=CF=x﹣2, ∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2; ③当4<x≤6时,如图4, 矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H, ∴EH=MH=2,DE=CH=x﹣2, ∵MN=6,CM=x, ∴CG=CN=6﹣x, ∴DF=DG=2﹣(6﹣x)=x﹣4, ∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18, 故选项A正确; 故选:A.
复制答案
考点分析:
相关试题推荐

如图示,用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点EF分别在边ABBC上,三角形①的边GD在边AD上,则的值是(   )

A.  B.  C.  D.

 

查看答案

已知关于x的一元二次方程x2+2x+m﹣2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为(  )

A. 6    B. 5    C. 4    D. 3

 

查看答案

保护环境,绿色出行,电动汽车被广泛需求,某电动汽车电瓶生产公司,6月连续10天对生产的一种电瓶零件进行抽样调查,生产的零件次品数如下(单位:个)1340303213.下列关于这组数据的统计量,错误的说法是(   )

A. 平均数是2 B. 中位数是3 C. 众数是3 D. 方差是

 

查看答案

多项式4x-x3分解因式的结果是(    )

A.  B.

C.  D.

 

查看答案

某水果生产基地2017年产量为80吨,预计2019年产量达到100吨,求水果产量的年平均增长率,设水果产量的年平均增长率为x,则可列方程为(   )

A.  B.

C.  D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.