在数学课上,老师让同学们画对顶角与,其中正确的是( )
A. B.
C. D.
计算的结果是( )
A. B. C. D. 9
当值相同时,我们把正比例函数与反比例函数 叫做“关联函数”,可以通过图象研究“关联函数”的性质.小明根据学习函数的经验,先以与为例对“关联函数”进行了探究.下面是小明的探究过程,请你将它补充完整.
(1)如图,在同一坐标系中画出这两个函数的图象.设这两个函数图象的交点分别为,,则点 的坐标为,点的坐标为_______;
(2)点是函数在第一象限内的图象上一个动点(点不与点重合),设点的坐标为,其中且.
①结论:作直线,分别与轴交于点,,则在点运动的过程中,总有.
证明:设直线的解析式为,将点和点的坐标代入,得
解得 则直线的解析式为.
令 ,可得,则点的坐标为.
同理可求,直线的解析式为,点的坐标为________.
请你继续完成证明的后续过程:
②结论:设的面积为,则是的函数.请你直接写出与的函数表达式.
如图,在平面直角坐标系 中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数 的图象经过点.
(1)求的值;
(2)将绕某个点旋转后得到(点 ,, 的对应点分别为点,,),且 在轴上,点在函数的图象上,求直线的表达式.
某玩具厂加工了一批玩具“六一”捐赠给儿童福利院,甲、乙两车间同时开始加工这批玩具,加工一段时间后,甲车间的设备出现故障停产一段时间,乙车间继续加工,甲维修好设备后继续按照原来的工作效率加工,从工作开始到加工完这批玩具乙车间工作 小时,甲、乙两车间加工玩具的总数量 (件)与加工时间 (时)之间的函数图象如图所示.
(1)求乙车间每小时加工玩具的数量.
(2)求甲车间维修完设备后, 与 之间的函数关系式.
(3)何时能加工一半?
有这样一个问题:探究函数y=-+|x|的图象与性质.
小军根据学习函数的经验,对函数y=-+|x|的图象与性质进行了探究.
下面是小军的探究过程,请补充完整:
(1)函数y=-+|x|的自变量x的取值范围是 ;
(2)表是y与x的几组对应值.
x | -2 | -1.9 | -1.5 | -1 | -0.5 | 0 | 1 | 2 | 3 | 4 | … |
y | 2 | 1.60 | 0.80 | 0 | -0.72 | -1.41 | -0.37 | 0 | 0.76 | 1.55 | … |
在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(3)观察图象,函数的最小值是 ;
(4)进一步探究,结合函数的图象,写出该函数的一条性质(函数最小值除外): .