在△ABC 中,AB BC AC,∠A ∠B ∠C 60°.点 D、E 分别是边 AC、AB 上的点(不与 A、B、C 重合),点 P 是平面内一动点.设∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点 P 在边 BC 上运动(不与点 B 和点 C 重合),如图⑴所示,则∠1+∠2 .(用 α 的代数式表示)
(2)若点 P 在△ABC 的外部,如图⑵所示,则∠α、∠1、∠2 之间有何关系?写出你的结论,并说明理由.
(3)当点 P 在边 BC 的延长线上运动时,试画出相应图形,并写出∠α、∠1、∠2 之间的关系式.(不需要证明)
如图 1 是一个长为 4a、宽为 b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图 2).
(1)图 2 中的阴影部分的面积为 ;(用 a、b 的代数式表示)
(2)观察图 2 请你写出a b2 、a b2 、ab 之间的等量关系是 ;
(3)根据⑵中的结论,若 x y 5 , x y ,则 x y2 =_______.
如果a c b ,那么我们规定(a,b)=c,例如:因为23 8 ,所以(2,8)=3.
(1)根据上述规定,填空:(3,27)= ,(4,1)= ,(2, )= ;
(2)若记(3,5)=a,(3,6)=b,(3,30)=c,求证: a b c .
已知:如图,△ABC 中,AD⊥BC 于点 D,BE 是∠ABC 的平分线,若∠DAC=30°,∠BAC=80°,求:∠AOB 的度数.
如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为 。
填写下列空格完成证明:如图, EF∥AD , 1 2 , BAC 70 ,求AGD .
【解析】
∵ EF∥AD ,
∴ 2 .( )
∵ 1 2 ,
∴ 1 3.( )
∴ ∥ .( )
∴ BAC 180 .( )
∵ BAC 70 ,
∴ AGD .