如图,一条直线与反比例函数的图像交于、两点,与轴交于点,轴,垂足为.
(1)如图甲,求反比例函数的解析式与点的坐标;
(2)如图乙,若点在线段上运动,连接,作,交于点.试说明.
某公司生产一种成本为20元/件的新产品,在2018年1月1日投放市场,前3个月是试销售,3个月后,正常销售.
(1)试销售期间,该产品的销售价格不低于20元/件,且不能超过80元/件,销售价格(元/件)与月销售量(万件)满足函数关系式,前3个月每件产品的定价多少元时,每月可获得最大利润?最大利润为多少?
(2)正常销售后,该种产品销售价格统一为元/件,公司每月可销售万件,从第4个月开始,每月可获得的最大利润是多少万元?
如图,在正方形中,点是对角线上的一点,点在的延长线上,且,交于点.
(1)证明:;
(2)如图,把正方形改为菱形,其它条件不变,当时,连接,试探究线段与线段的数量关系,并说明理由.
如图,在中,,点在边上,以点为圆心,为半径的圆经过点 ,过点作直线,使.
(1)判断直线与的位置关系,并说明理由;
(2)若,,求图中阴影部分的面积.
某校初三一班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):
甲队 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙队 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲队成绩的中位数是_________分,乙队成绩的众数是_________分;
(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是_________队;
(3)测试结果中,乙队获满分的四名同学相当优秀,他们是三名男生、一名女生,现准备从这四名同学中随机抽取两人参加学校组织的经典诵读比赛,用树状图或列表法求恰好抽中一男生一女生的概率.
计算:
(1).
(2).