如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+b分别交x,y轴于点A、C,抛物线y=ax2+x+4经过A、C两点,交x轴于另外一点B.
(1)求抛物线的解析式;
(2)点P在第一象限内抛物线上,连接PB、PC,作平行四边形PBDC,DE⊥y轴于点E,设点P 的横坐标为t,线段DE的长度为d,求d与t之间的函数关系式.
(3)在(2)的条件下,延长BD交直线AC与点F,连接OF,若∠AFO=∠BFO,求点P的坐标.
四边形ABCD内接于⊙O,AC为其中一条对角线,且S△ABC:S△ADC=AB:AD.
(1)如图1,求证:BC=CD;
(2)如图2:连接OC,交对角线BD于点E,若∠BAD=60°,求证:OE=EC;
(3)如图3,在(2)的条件下,过点D作DF⊥AC于点F,连接FO并延长FO,交AB边于点G,若FG⊥AB,OC=,求△OFC的面积.
某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石
(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆?
(2)随着工程的进展,车队需要一次运输沙石超过160吨,为了完成任务,准备新增购这两种卡车共6辆,车队最多新购买载重量为8吨的卡车多少辆?
如图,是的中线,,交于点,是的中点,连接.
(1)求证:四边形是平行四边形;
(2)若四边形的面积为,请直接写出图中所有面积是的三角形.
为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图.请结合图中所给信息解答下列问题:
(1)本次调查的学生共有多少人?
(2)计算并将条形统计图补充完整;
(3)该校共有学生2000人,估计该校约有多少人选修乐器课程?
如图,方格纸中每个小正方形的边长均为1,线段的两个端点均在小正方形的顶点上.
(1)在图中画出面积为4的等腰,且点在小正方形的顶点上;
(2)在图中画出平行四边形,且点和点均在小正方形的顶点上,,连接,请直接写出的面积.