甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:
班级 | 人数 | 中位数 | 方差 | 平均字数 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
某同学根据上表分析得出如下结论:①甲,乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是( )
A. ①②③ B. ①② C. ①③ D. ②③
的绝对值是
A. B. C. D. 1
(x2y)2的结果是( )
A. x6y B. x4y2 C. x5y D. x5y2
-3的相反数是( )
A. -3 B. - C. D. 3
如图,在平面直角坐标系中,点O为坐标原点,直线y=2x+b分别交x,y轴于点A、C,抛物线y=ax2+x+4经过A、C两点,交x轴于另外一点B.
(1)求抛物线的解析式;
(2)点P在第一象限内抛物线上,连接PB、PC,作平行四边形PBDC,DE⊥y轴于点E,设点P 的横坐标为t,线段DE的长度为d,求d与t之间的函数关系式.
(3)在(2)的条件下,延长BD交直线AC与点F,连接OF,若∠AFO=∠BFO,求点P的坐标.
四边形ABCD内接于⊙O,AC为其中一条对角线,且S△ABC:S△ADC=AB:AD.
(1)如图1,求证:BC=CD;
(2)如图2:连接OC,交对角线BD于点E,若∠BAD=60°,求证:OE=EC;
(3)如图3,在(2)的条件下,过点D作DF⊥AC于点F,连接FO并延长FO,交AB边于点G,若FG⊥AB,OC=,求△OFC的面积.