如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与直线y=x﹣3分别交x轴、y轴上的B、C两点,设该抛物线与x轴的另一个交点为点A,顶点为点D,连接CD交x轴于点E.
(1)求该抛物线的表达式及点D的坐标;
(2)求∠DCB的正切值;
(3)如果点F在y轴上,且∠FBC=∠DBA+∠DCB,求点F的坐标.
如图,已知梯形ABCD中,AD∥BC,AB=AC,E是边BC上的点,且∠AED=∠CAD,DE交AC于点F.
(1)求证:△ABE∽△DAF;
(2)当AC•FC=AE•EC时,求证:AD=BE.
某市植物园于2019年3月-5月举办花展,按照往年的规律推算,自4月下旬起游客量每天增加人,游客量预计将在5月1日达到高峰,并持续到5月4日,随后游客量每天有所减少.已知4月24日为第一天起,每天的游客量(人)与时间(天)的函数图像如图所示,结合图像提供的信息,解答下列问题:
已知该植物园门票元/张,若每位游客在园内每天平均消费元,试求5月1日-5月4日,所有游客消费总额为多少元?
当时,求关于的函数解析式.
如图,已知的弦长为,延长至,且,,
求: 的半径;
点到直线的距离.
解方程组:
计算: