某校有15位同学参加了学校组织的才艺表演比赛.已知他们所得的分数互不相同,共设8个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列15名同学成绩的统计量中只需知道一个量,它是( )
A. 众数 B. 中位数 C. 方差 D. 平均数
若化简|1-x|-的结果为2x﹣5,则x的取值范围是( )
A. x为任意实数 B. 1≤x≤4 C. x≥1 D. x≤4
不解方程,判别方程5x2﹣7x+5=0的根的情况是( )
A. 有两个相等的实数根 B. 有两个不相等的实数根 C. 只有一个实数根 D. 没有实数根
下列图形中,是中心对称图形但不是轴对称图形的是
A.
B.
C.
D.
如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.
如图①,直线L:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.
(1)若L:y=-x+2,则P表示的函数解析式为______;若P:,则表示的函数解析式为_______.
(2)如图②,若L:y=-3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;
(3)如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,求出L,P表示的函数解析式.