下列生活现象中,属于平移的是( )
A. 足球在草地上滚动 B. 拉开抽屉 C. 电风扇风叶工作 D. 钟摆的摆动
如图,在菱形中,对角线,,点从点出发沿方向匀速运动,速度是,点从点出发沿方向匀速运动,速度是,,与交于点,连接.设运动时间为.
(1)当于时,求的值;
(2)设四边形的面积为,求与之间的函数关系式;
(3)是否存在某一时刻,使平分?若存在,求的值;若不存在,请说明理由.
如图,正方形ABCD的四个顶点分别在正方形EFGH的四条边上,我们称正方形EFGH是正方形ABCD的外接正方形.
探究一:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍?如图,假设存在正方形EFGH,它的面积是正方形ABCD的2倍.
因为正方形ABCD的面积为1,则正方形EFGH的面积为2,
所以EF=FG=GH=HE=,设EB=x,则BF=﹣x,
∵Rt△AEB≌Rt△BFC
∴BF=AE=﹣x
在Rt△AEB中,由勾股定理,得
x2+(﹣x)2=12
解得,x1=x2=
∴BE=BF,即点B是EF的中点.
同理,点C,D,A分别是FG,GH,HE的中点.
所以,存在一个外接正方形EFGH,它的面积是正方形ABCD面积的2倍
探究二:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的3倍?(仿照上述方法,完成探究过程)
探究三:巳知边长为1的正方形ABCD, 一个外接正方形EFGH,它的面积是正方形ABCD面积的4倍?(填“存在”或“不存在”)
探究四:巳知边长为1的正方形ABCD,是否存在一个外接正方形EFGH,它的面积是正方形ABCD面积的n倍?(n>2)(仿照上述方法,完成探究过程)
工人师傅用一块长为2m,宽为1.2m的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)
(1)若长方体底面面积为1.28m2,求裁掉的正方形边长;
(2)若要求制作的长方体的底面长不大于底面宽的3倍,并将容器进行防锈处理,侧面每平方米的费用为50元,底面每平方米的费用为200元,裁掉的正方形边长多大时,总费用最低,最低为多少?
如图,中,,是的角平分线,点为的中点,连接并延长到点,使,连接,和.
(1)求证:;
(2)判断并证明四边形的形状;
(3)为添加一个条件______,则四边形是矩形(填空即可,不必说明理由).
在同一平面直角坐标系中,一次函数与反比例函数(为常数,且)的图像交于、两点,它们的部分图像如图所示,的面积是6.
(1)求一次函数与反比例函数的表达式;
(2)请直接写出不等式的解集.