已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=2,过A,D两点作⊙O,交AB于点E
(1)求弦AD的长;
(2)如图1,当圆心O在AB上,且点M是圆O下方的半圆上的一动点,连接DM交AB于点N,求当△DEM是等腰三角形时,求ON的长;
(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP-DQ的值变不变?若不变,请求出其值;若变化,请说明理由.
如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)若⊙P与x轴有公共点,则k的取值范围是______.
(2)连接PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(3)当⊙P与直线l相切时,k的值为______.
某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.
(1)当销售单价定为每千克55元,计算月销售量和月销售利润;
(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC.
(1)求证:AC平分∠BAD;
(2)若AB=3,AC=2,求EC和PB的长.
如图,AB、CD为两个建筑物,建筑物AB的高度为100米,从建筑物AB的顶点A处测得建筑物CD的顶部C处的俯角∠EAC为30°,测得建筑物CD的底部D处的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.
(1)从中任意抽取一张卡片,该卡片上数字是5的概率为 ;
(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.