满分5 > 初中数学试题 >

定义: 我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角...

定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理【解析】

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

 

(1)见解析;(2)证明见解析;(3)FH=2. 【解析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形; (2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论; (3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出EQ=FE,继而求出FG•FE=8,即可得出结论. (1)由图1知,AB=,BC=2,∠ABC=90°,AC=5, ∵四边形ABCD是以AC为“相似对角线”的四边形, 当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA, ∴或, ∴CD=10或CD=2.5 同理:当∠CAD=90°时,AD=2.5或AD=10, (2)∵∠ABC=80°,BD平分∠ABC, ∴∠ABD=∠DBC=40°, ∴∠A+∠ADB=140° ∵∠ADC=140°, ∴∠BDC+∠ADB=140°, ∴∠A=∠BDC, ∴△ABD∽△BDC, ∴BD是四边形ABCD的“相似对角线”; (3)如图3, ∵FH是四边形EFGH的“相似对角线”, ∴△EFH与△HFG相似, ∵∠EFH=∠HFG, ∴△FEH∽△FHG, ∴, ∴FH2=FE•FG, 过点E作EQ⊥FG于Q, ∴EQ=FE•sin60°=FE, ∵FG×EQ=2, ∴FG×FE=2, ∴FG•FE=8, ∴FH2=FE•FG=8, ∴FH=2.
复制答案
考点分析:
相关试题推荐

华为瓦特实验室试验一种新型快充电池,充电时电池的电量是充电时间(分的一次函数,其中.已知充电前电量为,测得充电10分钟后电量达到,充满电后手机马上开始连续工作,工作阶段电池电盘是工作时间的二次函数,如图所示,是该二次函数顶点,又测得充满电后连续工作了40分钟,这时电量降为,厂商规定手机充电时不能工作,电量小于时手机部分功能将被限制,不能正常工作.

(1)求充电时和充电后使用阶段关于的函数表达式(不用写出取值范围);

(2)为获得更多实验数据,实验室计划在首次充满电并使用40分钟后停止工作再次充电,充电6分钟后再次工作,假定所有的实验条件不变请问第二次工作的时间多长(电量到就停止工作)?

 

查看答案

(1)如图1,已知垂直平分,垂足为相交于点,连接

求证:

(2)如图2,在中,的中点.

①用直尺和圆规在边上求作点,使得(保留作图痕迹,不要求写作法);

②在①的条件下,如果,P为MN中点,求MQ的长度.

 

查看答案

如图是某教室里日光灯的四个控制开关(分别记为A、B、C、D),每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.

(1)求王老师按下第一个开关恰好能打开第一排日光灯的概率;

(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请列表格或画树状图加以分析.

 

查看答案

近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:

(1)本次一共调查了多少名购买者?

(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为     度.

(3)若该超市这一周内有1600名购买者,请你估计使用AB两种支付方式的购买者共有多少名?

 

查看答案

如图,为⊙O的直径,为⊙O的弦,,且

(1)求证:⊙O的切线;

(2)若,求⊙O的半径.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.