在实数0,-1.5,1,- 中,比-2小的数是( )
A. 0 B. -1.5 C. 1 D. -
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=10,并求出此时P点的坐标;
(3)设(1)中的抛物线交y轴交于C点,在该抛物线的对称轴上是否存在点Q,使△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
如图,,,三点在上,直径平分,过点作交弦于点,在的延长线上取一点,使得.
(1)求证:是的切线;
(2)连接AF交DE于点M,若AD=4,DE=5,求DM的长.
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
已知关于的一元二次方程,其中为常数.
(1)求证:无论为何值,方程总有两个不相等实数根;
(2)若抛物线与轴交于、两点,且,求的值;
某中学就“戏曲进校园”活动的喜爱情况进行了随机调查,对收集的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:(图中表示“很喜欢”,表示“喜欢”,表示“一般”,表示“不喜欢”)
(1)被调查的总人数是_________,扇形统计图中部分所对应的扇形圆心角的度数为_________;
(2)补全条形统计图;
(3)在抽取的类5人中,刚好有甲、乙、丙3个女生和丁、戊2个男生,从中随机抽取两个同学担任两角色,用画树状图或列表法求出抽到的两个学生性别不相同的概率.