满分5 > 初中数学试题 >

小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润...

小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

 

(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元. 【解析】 (1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式; (2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得. (1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得 W1=(50+x)(160-2x)=-2x²+60x+8000, W2=19(50-x)=-19x+950; (2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950, ∵-2<0,=10.25, 故当x=10时,W总最大, W总最大=-2×10²+41×10+8950=9160.
复制答案
考点分析:
相关试题推荐

如图,已知一次函数y1k1xb的图象与x轴,y轴分别交于AB两点,与反比例函数y2的图象分别交于CD两点,且D(2,-3)OA2.

(1)求一次函数与反比例函数的解析式;

(2)请直接写出不等式k1xb≥0的解集;

(3)动点P(0m)y轴上运动,当|PCPD|的值最大时,请写出点P的坐标.

 

查看答案

如图1,是全国最大的瓷碗造型建筑,座落于江西景德镇,整体造型概念来自“宋代影青斗笠碗”,造型庄重典雅,象征“万瓷之母”.小敏为了计算该建筑物横断面(瓷碗橫断面ABCD为等腰梯形)的高度,如图2,她站在与瓷碗底部AB位于同一水平面的点P处测得瓷碗顶部点D的仰角为45°,而后沿着一段坡度为0.44(坡面与水平线夹角的正切值)的小坡PQ步行到点Q(此过程中AD,AP,PQ始终处于同一平面)后测得点D的仰角减少了5°.已知坡面PQ的水平距离为20米,小敏身高忽略不计,试计算该瓷碗建筑物的高度.(参考数据:sin 40°≈0.64,tan  40°≈0.84)

 

查看答案

如图,AB是半圆O的直径,点P是半圆上不与点AB重合的动点,PCAB,点MOP中点.

(1)求证:四边形AOCP是平行四边形;

(2)填空:①当∠ABP      时,四边形AOCP是菱形;

②连接BP,当∠ABP      时,PC是⊙O的切线.

 

查看答案

为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:

(1)学校这次调查共抽取了     名学生;

(2)补全条形统计图;

(3)在扇形统计图中,戏曲所在扇形的圆心角度数为     

(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?

 

查看答案

化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.