正方形中,E是边上一点,
(1)将绕点A按顺时针方向旋转,使重合,得到,如图1所示.观察可知:与相等的线段是_______,______.
(2)如图2,正方形中,分别是边上的点,且,试通过旋转的方式说明:
(3)在(2)题中,连接分别交于,你还能用旋转的思想说明.
某市某特产专卖店销售一种蜜枣,每千克的进价为10元,销售过程中发现,每天销量与销售单价x(元)之间关系可以近似地看作一次函数.(利润=售价-进价)
(1)写出每天的利润w(元)与销售单价x(元)之间函数解析式;
(2)当销售单价定为多少元时,这种蜜枣每天能够获得最大利润?最大利润是多少元?
(3)物价部门规定,这种蜜枣的销售单价不得高于30元.若商店想要这种蜜枣每天获得300元的利润,则销售单价应定为多少元?
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠BAD=,求AD的长;
(3)试探究FB、FD、FA之间的关系,并证明.
如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”约为,而当手指接触键盘时,肘部形成的“手肘角”约为.如图2是其侧面简化示意图,其中视线水平,且与屏幕垂直.
(1)若屏幕上下宽,科学使用电脑时,求眼睛与屏幕的最短距离的长;
(2)若肩膀到水平地面的距离,上臂,下臂水平放置在键盘上,其到地面的距离.请判断此时是否符合科学要求的?(参考数据:,,所有结果精确到个位)
现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数 | 频数 | 频率 |
0≤x<4000 | 8 | a |
4000≤x<8000 | 15 | 0.3 |
8000≤x<12000 | 12 | b |
12000≤x<16000 | c | 0.2 |
16000≤x<20000 | 3 | 0.06 |
20000≤x<24000 | d | 0.04 |
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
先化简,再求值:,其中x的值从不等式组的整数解中选取.