如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.
(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;
(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.
如图,Rt△ABC中,∠BAC=90°,E是AC的中点,AE=2.经过点E作△ABE外接圆的切线交BC于点D,过点C作CF⊥BC交BE的延长线于点F,连接FD交AC于点H,FD平分∠BFC.
(1)求证:DE=DC;
(2)求证:HE=HC=1;
(3)求BD的长度.
某商场销售一种进价为每件10元的日用商品,经调查发现,该商品每天的销售量(件)与销售单价(元)满足,设销售这种商品每天的利润为(元).
(1)求与之间的函数关系式;
(2)在保证销售量尽可能大的前提下,该商场每天还想获得2000元的利润,应将销售单价定为多少元?
(3)当每天销售量不少于50件,且销售单价至少为32元时,该商场每天获得的最大利润是多少?
如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
在某校开展的“好书伴我成长”课外阅读活动中,为了解八年级学生的课外阅读情况,随机抽查部分学生,并对其课外阅读量进行统计分析,绘制成图1、图2两幅尚不完整的统计图,请根据图中信息,解答下列问题:
(1)求被抽查的学生人数及课外阅读量的平均数;
(2)求扇形统计图中的值;
(3)根据样本数据,估计该校八年级800名学生在本次活动中课外阅读量多于2本的人数.
如图,在△ABC中,∠ACB=90°,点D、E分别在AC、BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处,若AC=12,AB=13,则CD的长为_________.