如图,在矩形中,,点E是边上的动点,将矩形沿折叠,点A落在点处,连接.
(1)如图,求证:;
(2)如图,若点恰好落在上,求的值;
(3)点E在边上运动的过程中,的度数是否存在最大值,若存在,求出此时线段的长;若不存在,请说明理由.
如图,将沿弦折叠,使折叠后的劣弧恰好经过圆心O,连接并延长交于点C,点P是优弧上的动点,连接.
(1)如图,用尺规面出折叠后的劣弧所在圆的圆心,并求出的度数;
(2)如图,若是的切线,,求线段的长;
(3)如图,连接,过点B作的重线,交的延长线于点D,求证:.
在平面直角坐标系中,如果一个点的纵坐标恰好是横坐标倍,那么我们就把这个点定义为“萌点”.
(1)若点的坐标分别为,则四边形四条边上的“萌点”坐标是___.
(2)若一次函数的图像上有一个“萌点”的横坐标是-3,求k值;
(3)若二次函数的图像上没有“萌点”,求k的取值范围.
水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变),据市场推测,经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克,在围养过程中(最多围养20天),平均每围养一天有10千克的鳊鱼会缺氧浮水。假设对缺氧浮水的鳊鱼能以5元/千克的价格抛售完.
(1)若围养x天后,该水产经销商将活着的鳊鱼一次性出售,加上抛售的缺氧浮水鳊鱼,能获利8500元,则需要围养多少天?
(2)若围养期内,每围养一天需支出各种费用450元,则该水产经销商最多可获利多少元?
如图,在中,,将沿方向向右平移得到,若.
(1)判断四边形的形状,并说明理由;
(2)求四边形的面积.
港珠澳大桥由香港人工岛向西横跨伶仃洋,经过澳门,至珠海洪湾,总长55千米.一辆客车和一辆轿车同时从香港人工岛出发沿港珠澳大桥行驶到达珠海洪湾,若轿车的行驶时间是客车行驶时间的,轿车平均每小时比客车多行驶8千米,求这辆轿车从香港人工岛出发到珠海洪湾需要多长时间.