如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.
(1)若点是边的中点,求反比例函数的解析式和点的坐标;
(2)若,求直线的解析式及的面积
老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线交于点,交于点,交于点.求证:四边形是菱形.
某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:
(1)能找出该同学错误的原因吗?请你指出来;
(2)请你给出本题的正确证明过程.
探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次.
(1)若参加聚会的人数为3,则共握手___次;若参加聚会的人数为5,则共握手___次;
(2)若参加聚会的人数为(为正整数),则共握手___次;
(3)若参加聚会的人共握手28次,请求出参加聚会的人数.
拓展:嘉嘉给琪琪出题:“若线段上共有个点(含端点,),线段总数为30,求的值.”
琪琪的思考:“在这个问题上,线段总数不可能为30.”琪琪的思考对吗?为什么?
小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
超市 | ||||
女工人数占比 | 62.5% | 62.5% | 50% | 75% |
(1)超市共有员工多少人?超市有女工多少人?
(2)若从这些女工中随机选出一个,求正好是超市的概率;
(3)现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
老师在黑板上写出如图所示的算式.
(1)嘉嘉在“□”中填入-6,请帮他计算“△”中填入的数字;
(2)琪琪说:在上边的等式中,“□”和“△”填入的一定是两个不同的数,琪琪的说法对吗?请说明理由.
如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
(1)连接,线段的长随的变化而变化,当最大时,______.
(2)当的边与坐标轴平行时,______.