满分5 > 初中数学试题 >

如图1,地面BD上两根等长立柱AB, CD之间悬挂一根近似成抛物线的绳子. (1...

如图1,地面BD上两根等长立柱AB, CD之间悬挂一根近似成抛物线的绳子.

(1)求绳子最低点离地面的距离;

(2)因实际需要,在离AB3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN1米,离地面1.8米,求MN的长;

(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m,抛物线F2的顶点离地面距离为k,当2≤k≤2.5时,求m的取值范围.

 

(1)m;(2)MN的长度为2.1m;(3)m的取值范围是4≤m≤8﹣2. 【解析】 试题(1)直接利用配方法求出二次函数最值得出答案;(2)利用顶点式求出抛物线F1的解析式,进而得出x=3时,y的值,进而得出MN的长;(3)根据题意得出抛物线F2的解析式,得出k的值,进而得出m的取值范围. 试题解析:(1)∵a=>0, ∴抛物线顶点为最低点, ∵y=x2﹣x+3=(x﹣4)2+, ∴绳子最低点离地面的距离为:m; (2)由(1)可知,对称轴为x=4,则BD=8, 令x=0得y=3, ∴A(0,3),C(8,3), 由题意可得:抛物线F1的顶点坐标为:(2,1.8), 设F1的解析式为:y=a(x﹣2)2+1.8, 将(0,3)代入得:4a+1.8=3, 解得:a=0.3, ∴抛物线F1为:y=0.3(x﹣2)2+1.8, 当x=3时,y=0.3×1+1.8=2.1, ∴MN的长度为:2.1m; (3)∵MN=DC=3, ∴根据抛物线的对称性可知抛物线F2的顶点在ND的垂直平分线上, ∴抛物线F2的顶点坐标为:(m+4,k), ∴抛物线F2的解析式为:y=(x﹣m﹣4)2+k, 把C(8,3)代入得:(8﹣m﹣4)2+k=3, 解得:k=﹣(4﹣m)2+3, ∴k=﹣(m﹣8)2+3, ∴k是关于m的二次函数, 又∵由已知m<8,在对称轴的左侧, ∴k随m的增大而增大, ∴当k=2时,﹣(m﹣8)2+3=2, 解得:m1=4,m2=12(不符合题意,舍去), 当k=2.5时,﹣(m﹣8)2+3=2.5, 解得:m1=8﹣2,m2=8+2(不符合题意,舍去), ∴m的取值范围是:4≤m≤8﹣2.
复制答案
考点分析:
相关试题推荐

如图1,四边形是正方形,且,点重合,以为圆心,作半径长为5的半圆,交于点,交于点,交的延长线于点.

发现是半圆上任意一点,连接,则的最大值为______

思考如图2,将半圆绕点逆时针旋转,记旋转角为

1)当时,求半圆落在正方形内部的弧长;

2)在旋转过程中,若半圆与正方形的边相切时,请直接写出此时点到切点的距离.(注:,,

 

查看答案

如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边分别相交于,两点.

1)若点边的中点,求反比例函数的解析式和点的坐标;

2)若,求直线的解析式及的面积

 

查看答案

老师布置了一个作业,如下:已知:如图1的对角线的垂直平分线于点,交于点,交于点.求证:四边形是菱形.

某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:

1)能找出该同学错误的原因吗?请你指出来;

2)请你给出本题的正确证明过程.

 

查看答案

探究:在一次聚会上,规定每两个人见面必须握手,且只握手1.

1)若参加聚会的人数为3,则共握手___次;若参加聚会的人数为5,则共握手___次;

2)若参加聚会的人数为为正整数),则共握手___次;

3)若参加聚会的人共握手28次,请求出参加聚会的人数.

拓展:嘉嘉给琪琪出题:“若线段上共有个点(含端点,),线段总数为30,求的值.”

琪琪的思考:“在这个问题上,线段总数不可能为30.”琪琪的思考对吗?为什么?

 

查看答案

小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20.所有超市女工占比统计表

超市

女工人数占比

62.5%

62.5%

50%

75%

 

1超市共有员工多少人?超市有女工多少人?

2)若从这些女工中随机选出一个,求正好是超市的概率;

3)现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.