满分5 > 初中数学试题 >

如图,在矩形纸片中,,,折叠纸片使点落在边上的处,折痕为.过点作交于,连接. (...

如图,在矩形纸片中,,折叠纸片使点落在边上的处,折痕为.过点,连接.

1)求证:四边形为菱形;

2)当点边上移动时,折痕的端点也随之移动.

①当点与点重合时(如图),求菱形的边长;

②若限定分别在边上移动,求出点在边上移动的最大距离.

 

(1)见解析;(2)①菱形BFEP的边长为cm,②点E在边AD上移动的最大距离为2cm. 【解析】 (1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论; (2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD-DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP=cm即可; ②找到E点离A最近和最远的两种情况即可求出点E在边AD上移动的最大距离.当点Q与点C重合时,点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,即可得出答案. 【解析】 (1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ, ∴点B与点E关于PQ对称, ∴PB=PE,BF=EF,∠BPF=∠EPF. 又∵EF∥AB, ∴∠BPF=∠EFP, ∴∠EPF=∠EFP, ∴EP=EF, ∴BP=BF=FE=EP, ∴四边形BFEP为菱形. (2)①如图1, 图1 ∵四边形ABCD为矩形, ∴BC=AD=5cm, CD=AB=3cm,∠A=∠D=90°. ∵点B与点E关于PQ对称, ∴CE=BC=5cm. 在Rt△CDE中,DE2=CE2-CD2, 即DE2=52-32, ∴DE=4cm,∴AE=AD-DE=5-4=1(cm). 在Rt△APE中,AE=1,AP=3-PB=3-PE, ∴EP2=12+(3-EP)2,解得EP=cm, ∴菱形BFEP的边长为cm. ②当点Q与点C重合时,如图1,点E离A点最近,由①知,此时AE=1cm. 当点P与点A重合时,如图2, 图2 点E离A点最远,此时四边形ABQE为正方形, AE=AB=3cm, ∴点E在边AD上移动的最大距离为2cm.
复制答案
考点分析:
相关试题推荐

如图,的直径,点上一点,的切线,于点,分别交两点.

1)求证:

2)若的半径为,求的长.

 

查看答案

学习习近平总书记关于生态文明建设重要讲话,牢固树立“绿水青山就是金山银山”的科学观,让环保理念深入到学校,某校张老师为了了解本班学生3月植树成活情况,对本班全体学生进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.

请根据图中信息,解答下列问题:

(1)求全班学生总人数;

(2)将上面的条形统计图与扇形统计图补充完整;

(3)张老师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,若再从这4人中随机抽取2人,请用画树状图或列表法求出全是B类学生的概率.

 

查看答案

反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).

(1)求反比例函数的解析式及B点的坐标;

(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.

 

查看答案

在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.

销售量y(千克)

34.8

32

29.6

28

售价x(元/千克)

22.6

24

25.2

26

 

(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.

(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?

 

查看答案

如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.