满分5 > 初中数学试题 >

如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段E...

如图,已知直线ab,∠ABC100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?

(特殊化)

1)当∠140°,交点P在直线a、直线b之间,求∠EPB的度数;

2)当∠170°,求∠EPB的度数;

(一般化)

3)当∠1n°,求∠EPB的度数(直接用含n的代数式表示).

 

(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|. 【解析】 (1)利用外角和角平分线的性质直接可求解; (2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解; (3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时; 【解析】 (1)∵BD平分∠ABC, ∴∠ABD=∠DBC=∠ABC=50°, ∵∠EPB是△PFB的外角, ∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°; (2)①当交点P在直线b的下方时: ∠EPB=∠1﹣50°=20°; ②当交点P在直线a,b之间时: ∠EPB=50°+(180°﹣∠1)=160°; ③当交点P在直线a的上方时: ∠EPB=∠1﹣50°=20°; (3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|; ②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
复制答案
考点分析:
相关试题推荐

发现与探索:你能求(x1)(x2019+x2018+x2017+……+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值:

1)(x1)(x+1)=x21

2)(x1)(x2+x+1)=x31

3)(x1)(x3+x2+x+1)=x41

……

由此我们可以得到:(x1)(x2019+x2018+x2017+……+x+1)=     ;请你利用上面的结论,完成下面两题的计算:

132019+32018+32017+……+3+1

2)(﹣250+(﹣249+(﹣248+……+(﹣2).

 

查看答案

证明:两直线平行,同旁内角互补.(在下面方框内画出图形)

已知:     

求证:     

证明:     

 

查看答案

积的乘方公式为:(abm     .(m是正整数).请写出这一公式的推理过程.

 

查看答案

在下列解题过程的空白处填上适当的内容(推理的理由或数学表达式)如图,∠1+∠2180°,∠3=∠4

求证:EFGH

证明:∵∠1+∠2180°(已知),

AEG=∠1(对顶角相等)

     

ABCD     ),

∴∠AEG=∠          

∵∠3=∠4(已知),

∴∠3+∠AEG=∠4+∠     (等式性质),

EFGH

 

查看答案

在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC三个顶点的位置如图所示,现将△ABC平移,使点A移动到点A',点BC的对应点分别是点B'、C'.

1)△ABC的面积是     

2)画出平移后的△A'B'C';

3)若连接AA'、CC′,这两条线段的关系是     

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.