-3的绝对值是( )
A. 3 B. -3 C. D. -
在平面直角坐标系xOy中,对于点P和图形W,如果以P为端点的任意一条射线与图形W最多只有一个公共点,那么称点P独立于图形W.
(1)如图1,已知点A(-2,0),以原点O为圆心,OA长为半径画弧交x轴正半轴于点 B.在P1(0,4),P2(0,1),P3(0,-3),P4(4,0)这四个点中,独立于的点是 ;
(2)如图2,已知点C(-3,0),D(0,3),E(3,0),点P是直线l:y=2x+8上的一个动点.若点P独立于折线CD-DE,求点P的横坐标xp的取值范围;
(3)如图3,⊙H是以点H(0,4)为圆心,半径为1的圆.点T(0,t)在y轴上且t>-3,以点T为中心的正方形KLMN的顶点K的坐标为(0,t+3),将正方形KLMN在x轴及x轴上方的部分记为图形W.若⊙H上的所有点都独立于图形W,直接写出t的取值范围.
如图,在中,. 将线段绕点逆时针旋转得到线段,是边上的一动点,连接交于点,连接.
(1)求证:;
(2)点在边上,且,连接交于点.
①判断与的位置关系,并证明你的结论;②连接,若,请直接写出线段长度的最小值.
在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).
(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;
(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;
(3)当m=4时,抛物线上有两点M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.
在如图所示的半圆中,P是直径AB上一动点,过点P作PC⊥AB于点P,交半圆于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.
小聪根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小聪的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 0 | 2.24 | 2.83 |
| 2.83 | 2.24 | 0 |
y2/cm | 0 | 2.45 | 3.46 | 4.24 | 4.90 | 5.48 | 6 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;
(3)结合函数图象,解决问题:当△APC有一个角是30°时,AP的长度约为 cm.
如图,是的直径,与相切于点.点在上,且,连接交于点,过点作于点,交于点,交于点.
(1)求证:;
(2)连接,若,求的长.