如图①,△ABC的角平分线BD,CE相交于点P.
(1)如果∠A=80°,求∠BPC=_____.
(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示)______.
(3)将直线MN绕点P旋转.
(i)当直线MN与AB,AC的交点仍分别在线段AB和AC上时,如图③,试探索∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由.
(ii)当直线MN与AB的交点仍在线段AB上,而与AC的交点在AC的延长线上时,如图④,试问(i)中∠MPB,∠NPC,∠A三者之间的数量关系是否仍然成立?若成立,请说明你的理由;若不成立,请给出∠MPB,∠NPC,∠A三者之间的数量关系,并说明你的理由.
“a2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.
例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,
∵(x+2)2≥0,
∴(x+2)2+1≥1,
∴x2+4x+5≥1.
试利用“配方法”解决下列问题:
(1)填空:x2﹣4x+5=(x____)2+_____;
(2)已知x2﹣4x+y2+2y+5=0,求x+y的值;
(3)比较代数式:x2﹣1与2x﹣3的大小.
如图,∠1=∠2,∠C=∠D.∠A与∠F有怎样的数量关系?请说明理由.
已知9x=32y+4,23y=,求x2019+y2020.
已知:(x+a)(x﹣2)的结果中不含关于字母x的一次项,先化简再求(a+1)2﹣(2﹣a)(﹣a﹣2)的值.
如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.
(1)画出△ABC向右平移4个单位后得到的△A1B1C1;
(2)图中AC与A1C1的关系是:_____.
(3)画出△ABC的AB边上的高CD;垂足是D;
(4)图中△ABC的面积是_____.