满分5 > 初中数学试题 >

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个...

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在RtABC中,∠ACB=90°,ABC=30°,则:AC=AB.

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BECE之间的数量关系为  

(2)如图2,点D是边CB上任意一点,连接AD,作等边ADE,且点E在∠ACB的内部,连接BE.试探究线段BEDE之间的数量关系,写出你的猜想并加以证明.

(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BEDE之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点Bx轴正半轴上的一动点,以AB为边作等边ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.

 

(1)EC=EB;(2)ED=EB,理由见解析;(3)ED=EB;拓展应用:C(1,2+). 【解析】 探究结论:(1)只要证明△ACE是等边三角形即可解决问题; (2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题; (3)结论不变,证明方法类似; 拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题. 探究结论(1),如图1中, ∵∠ACB=90°,∠B=30°, ∴∠A=60°, ∵AC=AB=AE=EB, ∴△ACE是等边三角形, ∴EC=AE=EB, 故答案为:EC=EB; (2)如图2中,结论:ED=EB. 理由:连接PE, ∵△ACP,△ADE都是等边三角形, ∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°, ∴∠CAD=∠PAE, ∴△CAD≌△PAE, ∴∠ACD=∠APE=90°, ∴EP⊥AB,∵PA=PB, ∴EA=EB,∵DE=AE, ∴ED=EB; (3)当点D为边CB延长线上任意一点时,同法可证:ED=EB, 故答案为:ED=EB; 拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA, ∵A(﹣,1), ∴∠AOH=30°, 由(2)可知,CO=CB, ∵CF⊥OB, ∴OF=FB=1, ∴可以假设C(1,n), ∵OC=BC=AB, ∴1+n2=1+(+2)2, ∴n=2+, ∴C(1,2+).
复制答案
考点分析:
相关试题推荐

绿水青山,就是金山银山.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12每台型设备日处理能力为15购回的设备日处理能力不低于140.

(1)请你为该景区设计购买两种设备的方案

(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠:采用(1)设计的哪种方案,使购买费用最少,为什么?

 

查看答案

因为,,…,

所以+++1+++1

解答下列问题:

1)在和式+++…中,第九项是      ;第n项是     

2)解方程

 

查看答案

已知△ABC中,∠ABC45°,AB7BC17,以AC为斜边在△ABC外作等腰RtACD,连接BD,则BD的长为___

 

查看答案

已知,在平面直角坐标系中,点MN的坐标分别为(14)和(30),点Qy轴上的一个动点,且MNQ三点不在同一直线上,当△MNQ的周长最小时,则点Q的坐标是___

 

查看答案

若分式方程式无解,则m的值为___

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.