在代数式和中,均可以取的值为( )
A. 9 B. 3 C. 0 D. -2
如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能完全地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.
请解答下列问题:
(1)求出+2的整数部分和小数部分;
(2)已知:10+=x+y,其中x是整数,且0<y<1,请你求出(x﹣y)的相反数.
如图,已知∠ABC.点D为∠ABC的内部一点,请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE交BC边与点P
(1)操作:画出满足题意的图形.
(2)探究:根据所画图形猜想∠ABC与∠DEF有怎样的数量关系?并说明理由.
如图,∠1=80°,∠2=100°∠C=∠D.
(1)判断AC与DF的位置关系,并说明理由;
(2)若∠C比∠A大20°,求∠F的度数.
已知:如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.
【解析】
_______,理由如下:
∵AB∥CD,
∴∠B=∠BCD,(_____)
∵∠B=70°,
∴∠BCD=70°,(______)
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴_______+_______=180°,
∴EF∥______,(______)
∴AB∥EF.(______)