满分5 > 初中数学试题 >

已知在四边形ABCD中,∠A=∠C=90°. (1)∠ABC+∠ADC= °; ...

已知在四边形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °

2)如图①,若DE平分∠ADCBF平分∠ABC的外角,请写出DEBF的位置关系,并证明;

3)如图②,若BEDE分别四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),试求∠E的度数.

 

(1)180°;(2)DE⊥BF;(3)450 【解析】 (1)根据四边形内角和等于360°列式计算即可得解; (2)延长DE交BF于G,根据角平分线的定义可得∠CDE=∠ADC,∠CBF=∠CBM,然后求出∠CDE=∠CBF,再利用三角形的内角和定理求出∠BGE=∠C=90°,最后根据垂直的定义证明即可; (3)先求出∠CDE+∠CBE,然后延长DC交BE于H,再根据三角形的一个外角等于与它不相邻的两个内角的和求解即可. (1)【解析】 ∵∠A=∠C=90°, ∴∠ABC+∠ADC=360°-90°×2=180°; 故答案为:180°; (2)【解析】 延长DE交BF于G, ∵DE平分∠ADC,BF平分∠CBM, ∴∠CDE=∠ADC,∠CBF=∠CBM, 又∵∠CBM=180°-∠ABC=180°-(180°-∠ADC)=∠ADC, ∴∠CDE=∠CBF, 又∵∠BED=∠CDE+∠C=∠CBF+∠BGE, ∴∠BGE=∠C=90°, ∴DG⊥BF, 即DE⊥BF; (3)【解析】 由(1)得:∠CDN+∠CBM=180°, ∵BE、DE分别四等分∠ABC、∠ADC的外角, ∴∠CDE+∠CBE=×180°45°, 延长DC交BE于H, 由三角形的外角性质得,∠BHD=∠CDE+∠E,∠BCD=∠BHD+∠CBE, ∴∠BCD=∠CBE+∠CDE+∠E, ∴∠E=90°-45°=45°
复制答案
考点分析:
相关试题推荐

某市创建绿色发展模范城市,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用生活污水集中处理(下称甲方案)和沿江工厂转型升级(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.

(1)求n的值;

(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;

(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

 

查看答案

某中学九年级组织了一次数学计算比赛(禁用计算器),每班选25名同学参加比赛,成绩分为ABCD四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,数学教研组将九年级一班和二班的成绩整理并绘制成如下的统计图,请根据提供的信息解答下列问题.

1)把一班竞赛成绩统计图补充完整.

2)填表:

3)请从以下给出的两个方面对这次比赛成绩的结果进行①从平均数、众数方面来比较一班和二班的成绩;②从B级以上(包括B级)的人数方面来比较一班和二班的成绩.

 

查看答案

如图,在△ABC中,点DE分别是边ABAC的中点,过点CCFABDE的延长线于点F,连接BE

1)求证:四边形BCFD是平行四边形.

2)当AB=BC时,若BD=2BE=3,求AC的长.

 

查看答案

解下列方程

1(3x2)24;      (23x214x

 

查看答案

计算:

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.