在下列方程组中,不是二元一次方程组的是( )
A. B. C. D.
方程的解是( )
A. B. C. D.
对任意一个三位数,如果满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以.
(1)计算:和;
(2)若是“相异数”,证明:等于的各数位上的数字之和.
如图,等边△ABC中,AB=10,D为BC的中点,E为△ABC内一动点,DE=3,连接AE,将线段AE绕点A逆时针旋转60°得AF,连接DF,求线段DF的最小值.
如图①,在平面直角坐标系中,等边△ABC的顶点A,B的坐标分别为(5,0),(9,0),点D是x轴正半轴上一个动点,连接CD,将△ACD绕点C逆时针旋转60°得到△BCE,连接DE.
(Ⅰ)直接写出点C的坐标,并判断△CDE的形状,说明理由;
(Ⅱ)如图②,当点D在线段AB上运动时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长及此时点D的坐标;若不存在,说明理由;
(Ⅲ)当△BDE是直角三角形时,求点D的坐标.(直接写出结果即可)
小刘同学在一次课外活动中,用硬纸片做了两个直角三角形,在中,,,;在中,,,.图①是小刘同学所做的一个数学探究:他将的直角边与的斜边重合在一起,并将沿方向移动.在移动过程中,、两点始终在边上(移动开始时点与点重合).
(1)在沿方向移动的过程中,小刘发现:、两点间的距离逐渐 ;连接后,的度数逐渐 .(填“不变”、“变大”或“变小”);
(2)小刘同学经过进一步地研究,编制了如下问题:
问题①:如图②,当、的连线与平行时,求平移距离的长;
问题②:如图③,在的移动过程中,的值是否为定值?如果是,请求出此定值;如果不是,请说明理由.