如图,直线l上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为
A. 8 B. 9 C. 10 D. 11
下列四个数中,是无理数的是 ( )
A. B. C. D. ()2
如图,在平面直角坐标系中,抛物线与轴相交于点,与轴相交于、两点,且点在点的右侧,设抛物线的顶点为.
(1)若点与点关于直线对称,求的值;
(2)若,求的面积;
(3)当时,该抛物线上最高点与最低点纵坐标的差为,求出与的关系;若有最大值或最小值,直接写出这个最大值或最小值.
如图,已知点、在直线上,且,于点,且,以为直径在的左侧作半圆,于,且.
(1)若半圆上有一点,则的最大值为________;
(2)向右沿直线平移得到;
①如图,若截半圆的的长为,求的度数;
②当半圆与的边相切时,求平移距离.
现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.
(1)求y与x之间的函数关系式;
(2)设种植的总成本为w元,
①求w与x之间的函数关系式;
②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.
如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.
(1)求证:△ABE≌△ACD;
(2)若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.