满分5 > 初中数学试题 >

有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车...

有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17.

(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?

(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?

 

(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用. 【解析】 (1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得; (2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可. (1)【解析】 设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: , 解得: . 答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨. (2)【解析】 设大货车有m辆,则小货车10-m辆,依题可得: 4m+(10-m)≥33 m≥0 10-m≥0 解得:≤m≤10, ∴m=8,9,10; ∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆; 设运费为W=130m+100(10-m)=30m+1000, ∵k=30〉0, ∴W随x的增大而增大, ∴当m=8时,运费最少, ∴W=130×8+100×2=1240(元), 答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.
复制答案
考点分析:
相关试题推荐

如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.

(1)求一次函数与反比例函数的解析式;

(2)记两函数图象的另一个交点为E,求△CDE的面积;

(3)直接写出不等式kx+b≤的解集.

 

查看答案

如图是放在水平地面上的一把椅子的侧面图,椅子高为AC,椅面宽为BE,椅脚高为ED,且AC⊥BEAC⊥CDAC∥ED.从点A测得点DE的俯角分别为64°53°.已知ED=35cm,求椅子高AC约为多少?

(参考数据:tan53°≈sin53°≈tan64°≈2sin64°≈

 

查看答案

如图,ABC内接于OAB=AC,延长BC至点D,使CD=CA,连接ADO于点E,连接BECE

1)求证:ABE≌△CDE

2)填空:

①当ABC的度数为______时,四边形AOCE是菱形;

②若AE=6EF=4DE的长为______

 

查看答案

书香校园活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:

类别

家庭藏书m

学生人数

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

 

根据以上信息,解答下列问题:

(1)该调查的样本容量为_____a_____

(2)在扇形统计图中,“A”对应扇形的圆心角为_____°

(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.

 

查看答案

先化简,再求值:,其中

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.