如图,阴影部分的面积是( )
A. xy B. xy C. 5xy D. 2xy
下图所示的几何体中,主视图与左视图不相同的几何体是:
A.
B.
C.
D.
在实数﹣3,2,0,﹣1中,最大的实数是( )
A. ﹣3 B. 2 C. 0 D. ﹣1
在平面直角坐标系中,抛物线y=交x轴于点A、B(点A在点B的左侧),交y轴于点C.
(1)如图,点D是抛物线在第二象限内的一点,且满足|xD﹣xA|=2,过点D作AC的平行线,分别与x轴、射线CB交于点F、E,点P为直线AC下方抛物线上的一动点,连接PD交线段AC于点Q,当四边形PQEF的面积最大时,在y轴上找一点M,x轴上找一点N,使得PM+MN﹣NB取得最小值,求这个最小值;
(2)如图2,将△BOC沿着直线AC平移得到△B′O′C′,再将△B'O′C′沿B′C′翻折得到△B′O″C′,连接BC′、O″B,则△C′BO″能否构成等腰三角形?若能,请直接写出所有符合条件的点O″的坐标,若不能,请说明理由.
阅读下列材料
计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分【解析】
(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
如图,在平行四边形ABCD中,CE⊥BC交AD于点E,连接BE,点F是BE上一点,连接CF.
(1)如图1,若∠ECD=30°,BC=BF=4,DC=2,求EF的长;
(2)如图2,若BC=EC,过点E作EM⊥CF,交CF延长线于点M,延长ME、CD相交于点G,连接BG交CM于点N,若CM=MG,求证:EG=2MN.