满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(...

如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.

(1)a=___,b=___,△BCD的面积为______

(2)如图2,若AC⊥BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;

(3)如图3,若AC⊥BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,的值是否变化?若不变,求出其值;若变化,请说明理由.

      

 

-3 -4 6 【解析】 (1)求出CD的长度,再根据三角形的面积公式列式计算即可得解; (2)根据等角的余角相等解答即可; (3)首先证明∠ACD=∠ACE,推出∠DCE=2∠ACD,再证明∠ACD=∠BCO,∠BEC=∠DCE=2∠ACD即可解决问题; (1)【解析】 如图1中, ∵|a+3|+(b-a+1)2=0, ∴a=-3,b=4, ∵点C(0,-3),D(-4,-3), ∴CD=4,且CD∥x轴, ∴△BCD的面积=1212×4×3=6; 故答案为-3,-4,6. (2)证明:如图2中, ∵∠CPQ=∠CQP=∠OPB,AC⊥BC, ∴∠CBQ+∠CQP=90°, 又∵∠ABQ+∠CPQ=90°, ∴∠ABQ=∠CBQ, ∴BQ平分∠CBA. (3)【解析】 如图3中,结论: =定值=2. 理由:∵AC⊥BC, ∴∠ACB=90°, ∴∠ACD+∠BCF=90°, ∵CB平分∠ECF, ∴∠ECB=∠BCF, ∴∠ACD+∠ECB=90°, ∵∠ACE+∠ECB=90°, ∴∠ACD=∠ACE, ∴∠DCE=2∠ACD, ∵∠ACD+∠ACO=90°,∠BCO+∠ACO=90°, ∴∠ACD=∠BCO, ∵C(0,-3),D(-4,-3), ∴CD∥AB, ∠BEC=∠DCE=2∠ACD, ∴∠BEC=2∠BCO, ∴=2.
复制答案
考点分析:
相关试题推荐

在平面直角坐标系中,点A的坐标是(3a-5a+1

1)若点Ay轴上,求点A的坐标.

2)若点Ax轴的距离与到y轴的距离相等,求点A的坐标.

 

查看答案

在平面直角坐标系中,已知ABC三个顶点的坐标分别为A-20),B-44),C3-3.

1)画出ABC

2)画出ABC向右平移3个单位长度,再向上平移5个单位长度后得到的,并求出平移后图形的面积.

 

查看答案

某山区有23名中、小学生因贫困失学需要捐助,资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元,某校学生积极捐款,我校初中学生每个年级各自分别捐助的贫困中学生和小学生的人数情况如下表:

1)求a,b的值.

2)九年级学生的捐款解决了其余贫困中小学生的学习费用,求九年级学生可捐助的贫困生中、小学生人数.

 

查看答案

已知的平方根是的立方根是-2.

1)求的平方根.         

2)计算:的值.

 

查看答案

如图,AB//CD,那么BCDE平行吗?为什么?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.