到三角形的三边距离相等的点是( )
A. 三条高的交点 B. 三条中线的交点 C. 三条角平分线的交点 D. 不能确定
已知下列各组数据,可以构成等腰三角形的是( )
A.1,2,1 B.2,2,1 C.1,3,1 D.2,2,5
在平面直角坐标系中,函数的图像记为,函数的图像记为,其中为常数,且,图像、,合起来得到的图像标记为.
(1)求图像与轴的交点坐标.
(2)当图像的最低点到轴距离为3时,求的值.
(3)当时,若点在图像上,求的值.
(4)点、的坐标分别为、,连接与图像有两个交点时的取值范围.
如图①,在菱形中, ,.点从点出发以每秒2个单位的速度沿边向终点运动,过点作交边于点,过点向上作,且,以、为边作矩形.设点的运动时间为(秒),矩形与菱形重叠部分图形的面积为.
(1)用含的代数式表示线段的长.
(2)当点落在边上时,求的值.
(3)当时,求与之间的函数关系式,
(4)如图②,若点是的中点,作直线.当直线将矩形分成两部分图形的面积比为时,直接写出的值
已知,,直线经过点,作,垂足为,连接.
(感知)如图①,点、在同侧,且点在右侧,在射线上截取,连接,可证,从而得出, ,进而得出 度.
(探究)如图②,当点、在异侧时,(感知)得出的的大小是否改变?若不改变,给出证明;若改变,请求出的大小.
(应用)在直线绕点旋转的过程中,当 ,时,直接写出的长.
某工地需要利用炸药实施爆破,操作人员点燃导火线后,要在炸药爆炸前跑到300米以外的安全区域,炸药导火线的长度y(厘米)与燃烧的时间x(秒)之间的函数关系如图所示.
(1)请写出点B的实际意义,
(2)求y与x之间的函数关系式,并写出自变量的取值范围.
(3)问操作人员跑步的速度必须超过多少,才能保证安全.