如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣4,2),B(2,n).
(1)求反比例函数和一次函数的解析式.
(2)连接OA,OB,求△AOB的面积.
(3)直接写出当0<y1<y2时,自变量x的取值范围.
共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50.)
为了丰富校园文化,某校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳,夹球跑,跳大绳,绑腿跑和拔河赛5项,为了解学生对这5项运动的喜欢情况,随机调查了该校部分学生最喜欢的一种项目(每名学生必选且只能选择5项中的一种),并将调查结果绘制成如图所示的不完整的统计图表:
根据图表中提供的信息解答下列问题:
(1)求a,b的值.
(2)请将条形统计图补充完整.
(3)根据调查结果,请你估计该校2500名学生中有多少名学生最喜欢绑腿跑.
学生最喜欢的活动项目的人数统计表
项目 | 学生数(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夹球跑 | a | 10 |
跳大绳 | 75 | 25 |
绑腿跑 | b | 20 |
拔河赛 | 90 | 30 |
在学校开展的数学活动课上,小明和小刚制作了一个正三棱锥(质量均匀,四个面完全相同),并在各个面上分别标记数字1,2,3,4,游戏规则如下:每人投掷三棱锥一次,并记录底面的数字,如果底面数字的和为奇数,那么小明赢;如果底面数字的和为偶数,那么小刚赢.
(1)请用列表或画树状图的方法表示上述游戏中的所有可能结果.
(2)请分别求出小明和小刚能赢的概率,并判断此游戏对双方是否公平.
(1)化简.
(2)解不等式组:.
已知:如图,四边形ABCD.
求作:点P,使PC∥AB,且点P到点A和点B的距离相等.
结论: