(问题提出)|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
(阅读理解)
为了解决这个问题,我们先从最简单的情况入手.|a|的几何意义是a这个数在数轴上对应的点到原点的距离.那么|a﹣1|可以看做a这个数在数轴上对应的点到1的距离;|a﹣1|+|a﹣2|就可以看作a这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究|a﹣1|+|a﹣2|的最小值.
我们先看a表示的点可能的3种情况,如图所示:
(1)如图①,a在1的左边,从图中很明显可以看出a到1和2的距离之和大于1.
(2)如图②,a在1和2之间(包括在1,2上),可以看出a到1和2的距离之和等于1.
(3)如图③,a在2的右边,从图中很明显可以看出a到1和2的距离之和大于1.
(问题解决)
(1)|a﹣2|+|a﹣5|的几何意义是 .请你结合数轴探究:|a﹣2|+|a﹣5|的最小值是 .
(2)|a﹣1|+|a﹣2|+|a﹣3|的几何意义是 .请你结合数轴探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ,并在图④的数轴上描出得到最小值时a所在的位置,由此可以得出a为 .
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
(拓展应用)
请在图⑤的数轴上表示出a,使它到2,5的距离之和小于4,并直接写出a的范围.
某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:
销售单价x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月销售量y(万件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.
(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.
(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)
如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)△ABC满足什么条件时,四边形ADCF是矩形?并证明你的结论.
如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣4,2),B(2,n).
(1)求反比例函数和一次函数的解析式.
(2)连接OA,OB,求△AOB的面积.
(3)直接写出当0<y1<y2时,自变量x的取值范围.
共享单车为人们的生活带来了极大的便利.如图,一辆单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A,B之间的距离为49cm,现测得AC,BC与AB的夹角分别为45°,68°.若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为5cm,求点E到地面的距离.(结果保留一位小数,参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50.)
为了丰富校园文化,某校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳,夹球跑,跳大绳,绑腿跑和拔河赛5项,为了解学生对这5项运动的喜欢情况,随机调查了该校部分学生最喜欢的一种项目(每名学生必选且只能选择5项中的一种),并将调查结果绘制成如图所示的不完整的统计图表:
根据图表中提供的信息解答下列问题:
(1)求a,b的值.
(2)请将条形统计图补充完整.
(3)根据调查结果,请你估计该校2500名学生中有多少名学生最喜欢绑腿跑.
学生最喜欢的活动项目的人数统计表
项目 | 学生数(名) | 百分比(%) |
袋鼠跳 | 45 | 15 |
夹球跑 | a | 10 |
跳大绳 | 75 | 25 |
绑腿跑 | b | 20 |
拔河赛 | 90 | 30 |