如图,O为坐标原点,四边形ABCD是菱形,A(-4,4),B点在第一象限,AB=5,AB与y轴交于点F,对角线AC交y轴于点E.
(1)直接写出B点C点坐标;
(2)动点P从C点出发以每秒1个单位的速度沿折线段C—D—A运动,求△EDP的面积y与时间t的关系式
(3)在(2)的条件下,是否存在一点P,使△APE沿其一边翻折构成的四边形是菱形,若存在,求出点P坐标;若不存在,请说明理由.
如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.
(1)求∠2、∠3的度数;
(2)求长方形纸片ABCD的面积S.
已知:实数a,b在数轴上的位置如图所示,化简:+﹣|a﹣b|.
如图在△ABC中,ACB=90°,点D,E分别是AC、AB的中点,点F在BC的延长线上,且CDF=A.
求证:四边形DECF是平行四边形.
如图,已知在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F.
求证:四边形CFDE是正方形.