有一种细菌的直径为0.000000012米,将这个数用科学记数法表示为( )
A. 12×108 B. 12×10﹣8 C. 1.2×10﹣8 D. 1.2×10﹣9
约分的结果是( )
A. -1 B. -2x C. D.
要使分式有意义,则x应满足的条件是( )
A. x>3 B. x<3 C. x≠3 D. x≠0
在平面直角坐标系中,对于点和,给出如下定义:若上存在一点不与重合,使点关于直线的对称点在上,则称为的反射点.下图为的反射点的示意图.
(1)已知点的坐标为,的半径为,
①在点,,中,的反射点是____________;
②点在直线上,若为的反射点,求点的横坐标的取值范围;
(2)的圆心在轴上,半径为,轴上存在点是的反射点,直接写出圆心的横坐标的取值范围.
如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB 于点E,点D在∠AOB内,且满足∠DPA=∠OPE,DP+PE=6.
(1)当DP=PE时,求DE的长;
(2)在点P的运动过程中,请判断是否存在一个定点M,使得的值不变?并证明你的判断.
在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+b的顶点在x轴上,P(x1,m),Q(x2,m)(x1<x2)是此抛物线上的两点.
(1)若a=1.
①当m=b时,求x1,x2的值;
②将抛物线沿y轴平移,使得它与x轴的两个交点间的距离为4,试描述出这一变化过程;
(2)若存在实数c,使得x1≤c﹣1,且x2≥c+7成立,则m的取值范围是_______.