如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:四边形AFCE是平行四边形;
(2)填空:①当t为 s时,四边形ACFE是菱形;②当t为 s时,△ACE的面积是△ACF的面积的2倍.
定义:我们把对角线相等的四边形叫做和美四边形.
(1)请举出一种你所学过的特殊四边形中是和美四边形的例子.
(2)如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;
(3)如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,∠AOB=60°,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论.
已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.
(1)求证:△BGF≌△FHC;
(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.
已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,
①求证:∠A=90°.②若DE=3,BD=4,求AE的长.
如图,在平行四边形ABCD中,E、F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE=CF.
在甲村至乙村间有一条公路,在C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示,为了安全起见,爆破点C周围半径250米范围内不得进入,问:在进行爆破时,公路AB段是否有危险?是否需要暂时封锁?请用你学过的知识加以解答.