例1:在等腰三角形ABC,∠A=120°,求B的度数.
例2:在等腰三角形ABC中,∠A=50°,求∠B的度数.
王老师启发同学们进行变式,小兰编了如下一题:变式等腰三角形ABC中,∠A=70°,求∠B的度数;
(1)请你解答小兰的变式题;
(2)解完(1)后,小兰发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°;
①当∠B的度数唯一时请你探索x的取值范围并用含x的式子表示∠B的度数;
②当∠B有三个不同的度数时请你探索x的取值范围,并用含x的式子表示∠B的度数.
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=
(1)求该反比例函数和一次函数的解析式;
(2)连接OB,求S△AOC﹣S△BOC的值;
(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).
主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理竞争,合作双赢.
要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
观点 | 频数 | 频率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)参加本次讨论的学生共有 人;表中a= ,b= ;
(2)在扇形统计图中,求D所在扇形的圆心角的度数;
(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.
如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
观察下列等式:2×=2+,3×=3+,4×=4+,…
(1)按此规律写出第5个等式;
(2)猜想第n个等式,并说明等式成立的理由.
如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),弧AA1是以点B为圆心,BA为半径的圆弧;弧A1A2是以点O为圆心,OA1为半径的圆弧;弧A2A3是以点C为圆心,CA2为半径的圆弧;弧A3A4是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,则点 A4的坐标是____,那么 A4n+1的坐标为____.