在方程,,,中,一元一次方程的个数为( )
A.1 B.2 C.3 D.4
如图1,在长方形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么:
(1)如图1,当点P到达点B,或点Q到达点A时,两点都停止运动.
①当t=3时,分别求AQ和BP的长;
②当t为何值时,线段AQ与线段AP相等?
(2)如图2,若P,Q到达B,A后速度不变继续运动,点Q开始向点B移动,P点返回向点A移动,其中一点到达目标点后就停止运动.问当t为何值时,线段PQ的长度等于线段BC长度的一半.
一辆最大载重48吨的大型货车,货车的货箱是长14m,宽2.5m,高3m的长方体,现有甲种货物18吨,乙种货物70m3,而甲种货物每吨的体积为2.5m3,乙种货物每立方米0.5吨.问:
(1)甲、乙两种货物是否都能装上车?请说明理由.
(2)为了最大地利用车的载重量和货箱的容积,两种货物应各装多少吨?
已知C,D为线段AB上的两点,点M,N分别为AC与BD的中点,若AB=13,CD=5,求线段MN的长.
已知x,y为有理数,现规定一种新运算*,满足x*y=xy–5.
(1)求(4*2)*(–3)的值;
(2)任意选择两个有理数,分别填入下列□和○中,并比较它们的运算结果:多次重复以上过程,你发现:□*○__________○*□(用“>”“<”或“=”填空);
(3)记M=a*(b–c),N=a*b–a*c,请探究M与N的关系,用等式表达出来.
如图,直线AB,CD相交于点O,∠BOC=80°,OE是∠BOC的角平分线,OF⊥OE.
(1)求∠COF的度数;
(2)说明OF平分∠AOC.