(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A、B两点之间的距离AB=|a-b|,线段AB的中点表示的数为
(问题情境)如图1,已知数轴上有三点、、,,点对应的数是.
(综合运用)(1)点B表示的数是__________.
(2)若,求点到原点的距离.
(3)如图2,在(2)的条件下,动点、两点同时从、出发向右运动,同时动点从点向左运动,已知点的速度是点的速度的倍,点的速度是点的速度倍少个单位长度/秒.经过秒,点、之间的距离与点、之间的距离相等,求动点的速度;
(4)如图3,在(2)的条件下,表示原点,动点、分别从、两点同时出发向左运动,同时动点从点出发向右运动,点、、的速度分别为个单位长度/秒,个单位长度/秒、个单位长度/秒,在运动过程中,如果点为线段的中点,点为线段的中点.请问的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由.
小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:
(1)小明总共剪开了 条棱.
(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补 全.(请在备用图中画出所有可能)
(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.
甲、乙两人同时从A地出发去25km远的B地,甲骑车,乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40min,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好为3h.
(1)若设乙的速度为x km/h,则甲的速度为 km/h,甲遇见乙时,乙走的路程可以表示为 km,甲走的路程可以表示为 km.
(2)两人的速度分别是多少?(请用方程来解决问题)
自来水公司为限制开发区单位用水,每月只给某单位计划内用水300吨,计划内用水每吨收费3元,超计划部分每吨按4元收费.
(1)用代数式表示(所填结果需化简):设用水量为x吨,当用水量小于等于300吨,需付款 元;当用水量大于300吨,需付款 元.
(2)某月该单位用水360吨,水费是__________元;若用水250吨,水费__________元.
(3)若某月该单位缴纳水费1300元,则该单位用水多少吨?(请用方程来解决问题)
一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了几天? (请用方程来解决问题)
用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab²+2ab+a. 如:1⊗3=1×3²+2×1×3+1=16
(1)求3⊗(﹣1)的值;
(2)若(a+1)⊗2=36,求a的值;
(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.